Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.149$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(tert-Butylamino)-3-phenylbenzo[4,5]-thieno[3,2-d]pyrimidin-4(3H)-one

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}$, the three fused rings of the benzo[4,5]thieno[3,2- d]pyrimidone system are essentially coplanar. The crystal packing is mainly stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions.

Comment

Thienopyrimidine derivatives are of great importance because of their remarkable biological properties (Ding et al., 2004). We have recently been engaged in the preparation of heterocyclic derivatives containing a fused pyrimidone unit using the aza-Wittig reaction (Cao et al., 2006; Hu, Li et al., 2005; Hu, Xu et al., 2005; Hu et al., 2006). We present here the structure of one such thienopyrimidine derivative, (I) (Fig. 1).

(I)

(II)

The three fused rings of (I) are essentially coplanar, the maximum deviation being 0.050 (3) \AA for atom C8. The phenyl ring $\mathrm{C} 11-\mathrm{C} 16$ is twisted with respect to the benzo[4,5]thieno[3,2-e]pyrimidinone ring system, making a dihedral angle of $70.5(1)^{\circ}$.

A $\pi-\pi$ interaction (Janiak, 2000) between the pyrimidine ring and the benzene ring $\mathrm{C} 1-\mathrm{C} 6$ at $(1-x,-y, 2-z)$ [centroid-to-centroid distance of 3.682 (2) \AA] and an intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction (Table $1 ; C g$ is the centroid of the pyrimidine ring) are effective in stabilizing the crystal structure of (I). There are also weak intramolecular C-H. $\cdot \mathrm{N}$ hydrogen bonds (Table 1).

Experimental

To a solution of ethyl 3-triphenylphosphoranylideneamino-benzo[4,5]thiophene-2-carboxylate (3 mmol) in dry dichloromethane (5 ml) was added phenyl isocyanate (3 mmol) under nitrogen at room temperature. After allowing the reaction mixture to stand for 10 h at $273-278 \mathrm{~K}$, the solvent was removed under reduced pressure and ether-petroleum ether ($1: 2 \mathrm{v} / \mathrm{v}, 12 \mathrm{ml}$) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give ethyl 3-(phenyliminomethyleneamino)benzo[b]thiophene-2carboxylate, (II), which was used directly without further purification. To a solution of (II) (15 ml) in dichloromethane (15 ml) was added tert-butylamine (3 mmol). After allowing the reaction mixture to

Received 23 October 2006
Accepted 12 November 2006
stand for 4 h , the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 3 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound, (I), in a yield of 63%. Suitable crystals were obtained by vapour diffusion of ethanol into dichloromethane at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OS}$
$M_{r}=349.44$
Triclinic, $P \overline{1}$
$a=9.7106(15) \AA$
$b=10.1139(15) \AA$
$c=10.5568(16) \AA$
$\alpha=104.928(3)^{\circ}$
$\beta=115.988(2)^{\circ}$
$\gamma=91.557(3)^{\circ}$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 2003 $)$
$\quad T_{\min }=0.962, T_{\max }=0.981$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.149$
$S=1.04$
3058 reflections
229 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 19-\mathrm{H} 19 C \cdots \mathrm{~N} 1$	0.96	2.57	$3.163(4)$	120
$\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{~N} 1$	0.96	2.43	$2.986(4)$	117
$\mathrm{C} 18-\mathrm{H} 18 A \cdots C g^{\mathrm{i}}$	0.96	2.71	$3.454(4)$	135

Symmetry code: (i) $-x+1,-y+1,-z+2 . C g$ is the centroid of the pyrimidine ring.
H atoms were located in a difference Fourier map and then treated as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}($ methyl C).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

The authors gratefully acknowledge financial support of this work by the Science Research Project of Yunyang Medical College (grant No. 2006QDJ16).

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A partial packing diagram of (I), showing the $\pi-\pi$ stacking and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions. The $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are indicated by dashed lines. H atoms not involved in hydrogen bonding have been omitted.

References

Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Cao, M.-H., Xu, S.-Z. \& Hu, Y.-G. (2006). Acta Cryst. E62, o1319-o1320.
Ding, M.-W., Xu, S.-Z. \& Zhao, J.-F. (2004). J. Org. Chem. 69, 8366-8371.
Hu, Y.-G., Li, G.-H., Tian, J.-H., Ding, M.-W. \& He, H.-W. (2005). Acta Cryst. E61, o3266-o3268.
Hu, Y.-G., Xu, S.-Z., Yuan, J.-Z., Ding, M.-W. \& He, H.-W. (2005). Acta Cryst. E61, o2649-o2651.
Hu, Y.-G., Zheng, A.-H. \& Li, G.-H. (2006). Acta Cryst. E62, o1457-o1459.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). $S A D A B S$. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

